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The present work deals with the buckling phenomenon characteristic of highly viscous 
liquid jets slowly impinging upon a plate. The quasi-one-dimensional equations of the 
dynamics of thin liquid jets are used as the basis for the theoretical analysis of buckling. 
With the problem linearized, the characteristic equation is obtained. Its solutions show 
that instability (buckling) sets in only in the presence of axial compression in the jet, 
and when the distance between the nozzle exit and the plate exceeds some critical value. 
The latter is calculated. It is shown that buckling instability corresponds to the 
rectilinear jet/folding jet bifurcation point. The value of the folding frequency is 
calculated at the onset of buckling. The theoretical results are compared with 
Cruickshank & Munson's (1981) and Cruickshank's (1988) experimental data and the 
agreement is fairly good. 

1. Introduction 
Free liquid jets attract the attention of investigators in large measure because of their 

wide use in applications. Of no small importance is also that, due to the pioneering 
work of Rayleigh (1879), such flows became a classical example of hydrodynamic 
stability theory. In 1920-30 studies of free liquid jets were connected, first of all, with 
the development of engines, whereas in 1960-80 with ink-jet printers, jet rheometers, 
etc. 

Beginning from the work of Rayleigh (1879) most attention has been paid to 
capillary jet breakup. In that case droplet separation results from the action of surface 
tension forces tending to minimize the free surface. Capillary breakup is characteristic 
only for low-velocity jets. The literature on linear and nonlinear effects in capillary 
breakup was reviewed by Bogy (1979) and Entov & Yarin (1984b) (see also the recent 
paper by Vassallo & Ashgriz 1991). 

With an increase of the outflow velocity the dynamic action of the ambient gas has 
a growing effect on jet breakup (e.g. air). As a result of this, thin jets of liquids with 
low viscosity begin to atomize irregularly, whereas for jets of highly viscous liquids the 
type of instability leading to breakup is changed. The emerging new type of instability 
is related to the growth of bending disturbances under the dynamic action of air. This 
was studied by Weber (1931), Debye & Daen (1959) and Entov & Yarin (1984~)  (see 
also the review of Entov & Yarin 1984b). 

The experiments of G. I. Taylor (1969u, b) revealed a new type of instability in thin 
free jets and threads of highly viscous liquids moving at fairly low velocities and subject 
to longitudinal compression over a certain length. The longitudinal compressive force 
in these experiments originated either through friction between the jet and the air, or 
under longitudinal compression by a pair of rods, of a very viscous liquid thread lying 
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FIGURE 1.  Buckling of a jet impinging upon a plate. 

on the surface of mercury. Buckling was also observed in thin jets propagating in a 
liquid medium under the sudden increase in the density of the latter (and, consequently, 
in the buoyancy force) and when jets impinge normally onto a plate (see figure 1). 
Impinging jets of highly viscous liquids were studied in the experiments of Cruickshank 
& Munson (1981) and it was shown that buckling sets in at Reynolds numbers (under 
the conditions of jet issue) Re < 1.2. Jets with Re > 1.2 are stable and remain 
rectilinear on impingement. There is also a restriction on the distance L between the 
nozzle exit from which the jet issues and the plate. If L is less than a certain value L,, 
there is no buckling. When Re < 1.2 and L 2 L,, two-dimensional bending 
perturbations arise during which the jet axis remains a plane curve, and the jet piles 
up onto the plate in the form of folds. With increasing distance L, the bending 
perturbations acquire the form of a helix, the jet axis becomes three-dimensional, and 
the jet begins to coil at the plate in the form of rings. In Cruickshank & Munson’s 
experiments buckling was also observed in highly viscous horizontal jets propagating 
along the free surface of a low-viscosity fluid (gravity excluded) when the jet begins to 
thicken immediately beyond the nozzle exit. Detailed reviews on liquid-jet buckling 
phenomena have been published by Entov & Yarin (19843) and Bejan (1987). 

The aim of the present paper is a theoretical description of the stability loss observed 
by Cruickshank & Munson (1981). The analysis is based on the quasi-one-dimensional 
equations of the dynamics of liquid jets derived by Entov & Yarin (1984a). A semi- 
empirical analysis of jet buckling was published by Cruickshank (1988), who 
introduced the additional assumption that the flow consists of two distinct regions: a 
far-field region in which the jet diameter is constant, and a near-plate region where the 
plate’s effect is concentrated. Cruickshank also neglected gravity and surface tension 
when calculating critical buckling height. The present analysis dispenses with these 
assumptions. 

The plan of the paper is as follows. In $2 the equations of the dynamics of thin liquid 
jets are briefly recovered. Then the system of governing equations is linearized in small 
buckling perturbations and reduced to an eigenvalue problem. In $82-4 the analysis of 
the onset of buckling is first restricted to a simple model problem (without gravity and 
surface tension). The liquid thread is considered to be under a constant compressive 
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force between two fixed points. In spite of its restrictive character the simplified 
eigenvalue problew allows one a deeper insight in the nature of buckling instability of 
liquid jets. Under ( xtain conditions its analytic solution is obtained in $3, whereas the 
numerical results a .e presented in $4. In $5 the real jet with gravity and surface tension 
is tackled. A num :rical method for its solution is proposed in $6. The problem is 
treated in $7 where the results obtained are presented, discussed and compared with the 
experimental data In conclusion in $8 we summarize the results. 

2. Governing equations and the model problem 
The asymptotic system of quasi-one-dimensional equations of the dynamics of thin 

liquid jets has been derived by Entov & Yarin (1984~) from the integral balance 
equations of mass, momentum and moment of momentum. Solution of the problems 
of the hydrodynamics of free thin jets is reduced to the calculation of the distributions 
of such ‘integral’ parameters as the cross-sectional area A ,  the velocity of the liquid in 
the centre of gravity of the jet cross-section V, and the angular velocity of the liquid 
cross-section $2, over the jet axis, and their evolution in time. The quasi-one- 
dimensional description holds under the assumption of jet slenderness, e.g. in the case 
when the scale length for variation along the jet is much greater than the radius of 
cross-section. 

In the general case of spatial motion of a jet with circular cross-section the 
continuity, momentum and moment of momentum equations of the dynamics of free 
thin liquid jets read (Entov & Yarin 1984~) 

p [ ?+ E q  = 2 (Fr + Q) + A, pgA + qh,, 
aZ a2 

aiw = + A, 7 x Q -A, k h  x pg + A, m. 

(2.1 a) 

(2.1 b) 

(2.1 c) 

Here t is the time; z is an arbitrary parameter reckoned along the jet axis; Wis the 
relative velocity of the liquid in the frame of reference associated with the jet; a is the 
radius of the jet cross-section; p is the density; 7 and n are the unit tangent vector and 
the unit principal-normal vector to the jet axis; rF, Q and Mrepresent the longitudinal 
force, the shearing force and the moment of stresses in the jet cross-section, 
respectively; g is the external force per unit mass, and q and m specify the linear density 
of external force and moment per unit length of the jet axis, respectively; B is the rate 
of change of the moment of momentum calculated by Entov & Yarin (1984~); 
A, = laR/azl, where R(z, t )  is the radius-vector of the jet axis; k is the curvature of the jet 
axis; I = 3 a 4  is the moment of inertia of the jet cross-section. It should be noted that 
here we change the notation of Entov & Yarin (1984~) and use A instead of theirf, z 
instead of s, F instead of P and g instead of F. 

Equation (2.1 a) represents the mass balance inside an infinitesimally short element 
of the jet, and (2.1 b) the balance of the forces applied to the element: inertial, internal 
and external. Equation (2.1 c) represents the balance of the moments of these forces. 

Equations (2.1) are closed by using the rheological constitutive equation of the liquid 
which allows one (accounting of the surface tension) to relate F and M with the 
kinematic parameters. In Entov & Yarin (1984~) this has been done for Newtonian 
liquid. Additionally some geometric and kinematic relations should be added to the 
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system (2.1). The most important of the kinematic relations is obtained under the 
condition that the jet surface is free from large shear stresses (such a relation will be 
used below in (2.8a)). 

The system of equations (2.1) now is applied to the simplified model problem of 
highly viscous liquid jet buckling. As was shown in Cruickshank & Munson's (1981) 
experiments, the effect of inertia and surface tension of the liquid may be neglected at 
first approximation. First, we also, for simplicity study the case of a horizontal jet, for 
the moment excluding gravity from our considerations. The buckling of horizontal jets 
also was investigated by Cruickshank & Munson (1981), which gives relevance to the 
non-gravity case. Therefore, we may regard the buckling of the jet as plane when 
searching for the instability threshold. In the problem at hand we may neglect the 
aerodynamic forces acting on the jet, taking below q = 0 and m = 0. Under the 
assumptions made, the quasi-one-dimensional equations of continuity, momentum 
and moment of momentum of thin liquid jets (2.1) reduce to the following form (the 
perturbations being small) : 

(2.2ec) aA 3Aw aF aQ, - 
at az a Z  aZ 
-+- = 0, - = 0, Fk+- - 0, 

(2.2 &) 

Here w and u are the projections of the liquid velocity in the jet on the tangent and 
normal to its axis, which is a plane curve; Q, is the projection of the shearing force in 
the cross-section on the normal to the jet axis; p is the viscosity of the liquid. The 
notation w and u is used instead of V, and V, of Entov & Yarin (1984a), respectively. 

Equation (2.24 is that of continuity; (2.2b) and (2.2~)  are the projections of the 
momentum equation of the tangent and normal to the axis of the jet; (2.24 is the 
projection of the moment of momentum equation on the direction of the unit binormal 
vector to the axis of the jet, and (2.2e) results from the one-dimensional reduction of 
the rheological constitutive equation for a Newtonian fluid and connects the 
longitudinal force in the thin free jet with the rate of strain (3p is the Trouton 
elongational viscosity). 

Taking account of the fact that the following relationships hold for small 
perturbations (H is the amplitude of the plane deflection of the jet (see figure 1)): 

u = aH/at, k = a2H/az2, (2.3a, b) 
we obtain, from (2.2c-e), the following equation, which is linear in the perturbations : 

In (2.4), ao(z) and wo(z) are the unperturbed distributions of the radius and velocity, 
which correspond to the rectilinear jet. Equation (2.4) is written in non-dimensional 
form; w: and L have been chosen as the scales for velocity and length, and a, (the 
subscript zero corresponds to the nozzle exit at x = 0) as the scale for the radius of the 
jet cross-section; L, = L/ao. Here, z is the coordinate along the unperturbed jet axis. 

To determine ao(z) and wo(z), we use (2.2a, b, e) to obtain the following problem: 

(2.5a, b) 
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The boundary condition at the plate at z = 1 in (2.5) means in fact that the liquid 
flows through it at a velocity wy (E = wy/w:). Such a condition is needed in the absence 
of a solution of the stationary equations (2.5) which simultaneously satisfies the 
boundary conditions at the nozzle exit and the exact boundary condition wo = 0 at 
z = 1. The latter corresponds to an impermeable plate with an infinite spread of liquid 
over it. The condition at z = 1 in (2.5) enables us to model the slowing of the jet by the 
plate in the case E < 1 to a first approximation. Since at the surface of the plate, where 
the jet spreads, recourse to the quasi-one-dimensional equations is generally unjustified, 
there is no sense in constructing a more detailed unperturbed solution within this 
formulation. In the case of a perforated, partly permeable plate this condition, 
naturally, corresponds to reality. 

Solutions to problem (2.5) were obtained by Matovich & Pearson (1969) in 
connection with fibre spinning (the case of E > l), and have the form 

(2.6a, b) 

In the jet-buckling problem under consideration here we obviously have E < 1. We 
can determine E in some specific situation by, say, comparing ao(z) from (2.6) with the 
experimentally observed profile of the jet near the point of stability loss (e.g. 
Cruickshank & Munson 1982). It should be stressed that the approximations (2.6) 
suffice for a qualitative analysis of the causes of stability loss, since under them the 
longitudinal force Fdivided by 3puxai w:/L equals InE by (2.2e): the case E > 1 relates 
to a tensile force F > 0 (fibres), and E < 1 to a compressive force, F < 0. 

In spite of the fact that in our simplified model the condition of the plate 
impermeability is discarded, the liquid approaching the plate is decelerated (the plate 
resists the liquid flow through it when wy c w:, E < 1). As a result, the internal viscous 
stresses in the jet cross-section are compressive and the jet is under a constant 
compressive force as a whole.? 

A more realistic unperturbed solution for ao(z) and wo(z) may be obtained by 
inclusion of the gravity force (if any) along the jet axis. Such a solution was found by 
Cruickshank & Munson (1982). Inclusion of the gravity force enabled them to use 
wo = 0 at z = 1 as boundary condition at the plate surface. This solution, as well as its 
stability, will be considered later in the present work. However, we first investigate the 
stability of the model solution (2.6). 

Assuming H(z, t )  = exp (At)f(z) ( A  is the eigenvalue, f (z)  the eigenfunction), we 
obtain by means of (2.4) and (2.6) the characteristic equation 

w0 = E", (a0)' = E-'. 

To solve the problem we need, generally speaking, to consider the edge regions of the 
jet near the nozzle exit and near the plate. In these regions the quasi-one-dimensional 
equations are inapplicable and Navier-Stokes equations have to be solved satisfying 
the boundary conditions at the nozzle exit, the no-slip condition at the plate surface 
and the conditions for the internal stresses at the free surface. The solutions of the 
Navier-Stokes equations must match that of (2.7). The difficulties involved in using the 

t It should be noted that the steady-state viscosity-dominated jet configuration in the buckling 
problems has nothing in common with that of planar irrotational inviscid jet flows incident on 
impermeable or semi-impermeable (porous) walls, which have been studied by using the hodograph 
method or some other transformations (see Birkhoff L Zarantonello 1957; Gurevich 1965, Jenkins 
& Barton 1988; King 1990). 
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Navier-Stokes equations can be overcome by staying within the bounds of the quasi- 
one-dimensional theory. Indeed, two of the five conditions needed for (2.7) are 
obvious: (a)  absence of any displacement of the jet axis at z = 0; (b) a smooth junction 
of the tangent to the jet axis and the nozzle at z = 0. 

The three remaining conditions can be found from Entov & Yarin's ( 1 9 8 4 ~ )  
expressions for the angular velocity of the liquid cross-section 0, and the moment 
of stresses in the jet cross-section M which in our case are 

The relations (2.8) are written in dimensional form for small bending perturbations; 
for plane buckling only the projections of A2 and M onto the binormal to the jet axis 
need be considered. 

In addition to the two boundary conditions already formulated, we consider four 
types of additional conditions and their relevance from the physical point of view. 

(i) The moment of internal stresses vanishes (Mb = 0) at z = 0 and z = 1 .  
(ii) There is no rotation of the liquid cross-section at the nozzle exit, which means 

52, = 0 at z = 0 (during buckling of the jet an angular velocity generally appears, 
directed along the binormal to the axis, 52, =I= 0), and Mb = 0 at the plate (z = 1). 

(iii) At z = 0, Mb = 0 and the jet axis is clamped at z = 1 .  
(iv) At z = 0, 52, = 0 and the jet axis is clamped at z = 1. 
We also assume throughout that there is no displacement of the jet axis at z = 1 .  

Thus, allowing for (2.8), we shall seek a solution to (2.7) with the following boundary 
conditions : 

(2 .9~-c )  d2f d3f ElnEd2f  
dz dz2 dz3 2 dz2 0 ;  df z = o :  f = O ,  -=o ,  h--+E"----= 

(2.9d, e) 

or z = 0: f = 0, dfldz = 0, d2fldz2 = 0; (2.10 a-c) 

d2f d3f E lnEdzf  
dz2 dz3 2 dz2 z = 1 ;  f = 0, h-+E---- = 0, (2. lOd, e) 

or df- d2f d3f E1nEd2f 
dz dz2 dz3 2 dz2 

z = 0: f = 0, - - 0, A-+E---- = 0; (2.lla-c) 

z = 1 :  f = 0, df/dz = 0, (2.1 1 d, e) 

or z = 0: f = 0, df/dz = 0, d2f/dz2 = 0; ( 2 . 1 2 H )  

Z =  1 :  f = O ,  df/dz=O. (2.12d, e)  

For each of these four sets of the boundary conditions we will obtain buckling 
(similarly to the theory of elastic beams). However, in the case of liquid jets some of 
them correspond to rather artificial situations, namely the conditions M ,  = 0 at 
z = 0 and z = 1 .  The jet corresponding to such conditions might exist when the nozzle 
and plate are heated, and the viscosity of the liquid in contact with them is low. 
However, the thin jet is cooled rapidly by the ambient gas and the liquid viscosity 
increases steeply. Under these circumstances we obtain from (2.8b) Mh = 0 at z = 0 
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and z = 1, and Mb is not zero inside a jet. Although such a situation seems rather 
artificial, it deserves consideration, as it permits analytical treatment (see below) and 
sheds light on some general trends in stability loss. 

In an isothermal situation a ‘clamp’ on the jet axis at the plate looks like the most 
appropriate condition from the physical point of view because the jet spreads at the 
plate, its radius and the moment of inertia becoming comparatively large. Therefore, 
according to (2.8b), the moment of internal stresses in cross-sections near the plate 
should be also very large. As a result the jet strongly resists rotation of its material 
cross-section by a compressive force, which corresponds to the ‘clamp’ condition. 

The condition 4, = 0 at the nozzle exit z = 0 is the most appropriate one, since the 
liquid cross-section cannot immediately acquire rotation (as a result of the inertia), 
which is absent at z = - 0 inside a nozzle. Thereby, it is natural to expect that the jets 
of Cruickshank & Munson’s (1981) and Cruickshank’s (1988) experiments correspond 
to the boundary conditions (2.12). 

Nevertheless, first we consider the simplified artificial situation that allows an 
analytical solution to be obtained. 

3. Analytic asymptotic solution 
We investigate first the problem (2.7), (2.9), assuming that h = 0, i.e. investigate the 

possibility of aperiodic loss of stability. Integrating twice, we obtain from (2.7) with the 
aid of (2.9) 

(4L2, E” In E)f  = 0. d3f In E d2f 
dz3 2 dz2 

Now consider the case when 
E =  1+6, 14 << 1. (3.2a, b) 

Substituting (3.2) in (3.1) and disregarding small terms of higher orders in 6, we 
obtain a linear differential equation with constant coefficients 

On searching for its particular solutions in the form f = const x exp (mz), we amve 
at the cubic equation 

m3-g:m2-4L2,g=0. (3.4) 
Using Cardan’s solution and again disregarding small terms of higher orders in C, we 

obtain solution to (3.4) in the form 
m, = u, m = u(-l- izz/3), 1 m3 = ~(-++i:z/3), u = (4~2,@. ( 3 . 5 ~ 4  

The general solution to the differential equation (3.3) allowing for (3.5) acquires the 
form 

Az) = C,exp(Uz)+exp(-~Uz)[C2cosQ1/3 Uz)+C3sin(i.\/3 Uz)]. (3.6) 
To determine the constants C,, we use the three remaining boundary conditions in 

( 2 . 9 ~ ~  b, d). Consequently, we find with the aid of (3.6) the condition for non-triviality 
of the solution to the linear system obtained of three equations in C,, C, and C,: 

exp(:U) = d3s inQd3  U)+cos(+z/3 U). (3.7) 
The left- and right-hand sides of (3.7) are shown as functions of U in figure 2. 
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lJ 

FIGURE 2. Left-hand (curve i) and right-hand (curve ii) sides of (3.7). 
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FIGURE 3. Eigenfunctions corresponding to boundary conditions (2.9) (curve i) and (2.10) (curve ii). 

Clearly, when U > 0, (3.7) cannot be satisfied. By the expression for U in ( 3 3 ,  this 
means that there cannot possibly be any non-trivial positions of ‘equilibrium’ (with a 
curved axis) in the case of stretching of the jet ( E  > 1, g > 0; fibre). The solution U = 0 
to (3.7), with allowance for (3.6) and (2.9), yields the trivial eigenfunctionfE 0. By 
contrast, in the case of compression of the jet as it impinges upon a plate, when 
E < 1, 5 < 0, and U < 0, there are solutions to (3.7) which lead to non-trivial eigen- 
functions. Consequently, there are in this case non-trivial forms of ‘equilibrium’ of the 
jet axis (with deflection), and aperiodic loss of stability takes place (when h = 0). The 
required solution U = U, < 0 to (3.7) corresponds to the root of least modulus, since 
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instability sets in at the shortest of all possible distances between the nozzle and the 
plate. Accordingly, we obtain from (3.7) U = U, = -4.233; the eigenfunction 
corresponding to this value of U has the form 

Az)/C, = exp(U,z)-exp(-~U,z)[cos(~.\/3 U,z)+.\/3sin(i.\/3 U,z)] (3.8) 
and is shown in figure 3, curve (i) cf, =f/fmaX). 

of stability : 
We use ( 3 . 2 ~ )  and ( 3 . 5 4  to find the quantity L, corresponding the aperiodic loss 

L rr, 4.355 L*,=’= ~ -- 
a0 (4(E- 1 )r  - (1 -E$’ (3.9) 

If with the given value of E, dictated by the conditions of the experiment, the 
distance between the nozzle and the plate exceeds the value predicted by (3.9), then at 
least aperiodic loss of stability will take placebuckling of the liquid jet or thread. The 
problem of the presence of other forms of stability loss when h is a complex number 
with a positive real part is solved below by numerical analysis. 

4. Numerical solution of the model problem 
First we consider the results of numerical solution of (2.7) with boundary conditions 

(2.10) corresponding to 0 < E < 1 (for the method of solution see 96). Unlike the 
preceding asymptotical analysis, E is now not always close to unity. Figure 4 shows the 
real and imaginary parts (A, and A,) of the first eigenvalue A as function of L, for 
certain values of E. It is clear that for L, less than a certain critical value L*,, the real 
part satisfies A, < 0 and the jet is stable. On the other hand, when L, > L,, the real 
part satisfies A, > 0, A, E 0 and the jet is unstable - buckling takes place. The critical 
value L,, for an arbitrary fixed E is defined by the eigenvalue whose real part first 
attains zero with an increase in L,. This corresponds to the point of stability loss 
determined in the experiment during a gradual increase in the distance between the 
nozzle and the plate. 

Thus, the numerical solution of (2.7) and (2.10) shows, in accordance with the results 
of the preceding asymptotical analysis, that stability is lost when there is an increase 
in the distance between the nozzle and the plate up to the value L, = L,,u,. The 
dependence of L,, on 1/E( - w:), which illustrates the change in the critical length at 
which stability is lost with increase in the rate of outflow of the jet from the nozzle, is 
shown in figure 5,  curve (i). The eigenfunction obtained in the calculation with E = 0.8, 
L,  = L,, = 13.8, is shown in figure 3, curve (ii) cf, =f/fm,,). 

A numerical solution was also found for (2.7) and (2.9), which was studied 
analytically in $ 3  for values of E close to unity. The dependence of L,, on l / E  obtained 
numerically in this case is shown in figure 5,  curve (ii). In the same figure curve (iii), 
which practically merges with curve (ii) as E approaches unity, represents the 
asymptotic result (3.9). Comparison with the numerical solution shows that the 
accuracy of (3.9) is fairly high even when E = 0.1, i.e. far beyond the limit of 
applicability of the asymptotic form. The eigenfunction determined in the numerical 
solution of (2.7) and (2.9) for E = 0.8, L, = L,, = 9.74 and divided by the value at the 
maximum practically coincides with curve (i) in figure 3. This shows yet again that the 
asymptotic solution (3.8) gives a satisfactory degree of accuracy not only as E+ 1, but 
also at values of E appreciably less than unity. 

As in the numerical solution of the problem (2.6) and (2.10), the eigenvalue h = 0 
corresponds to loss of stability when L, = L,, for arbitrary values 0 < E < 1. 

20 FLM 253 
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FIGURE 4. Real and imaginary parts of eigenvalue h of (2.7) under boundary conditions (2.10). solid 

curves represent A,, dashed ones A,. Curves (i) correspond to E = 0.2, (ii) 0.4, (iii) 0.7, (iv) 0.8. 
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FIGURE 5. Dependence of critical distance to plate on outflow rate: Curve (i) corresponds to problem 
(2.7) under boundary conditions (2.10); curve (ii) to (2.7) under boundary conditions (2.9) ; curve (iii) 
to asymptotic result (3.9) for (2.7), (2.9). 



Buckling of thin liquid jets 603 

FIGURE 6.  
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First eigenvalue of (2.7), (2.12) under the ‘clamp’ boundary condition. Solid 
represent A,, dashed ones A,. Curves (i) correspond to E = 0.2, (ii) to 0.8. 
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FIGURE 7. Folding frequency: curve (i) eigenvalue problem (2.7), (2.11); (ii) (2.7), (2.12). 

Let us now consider the numerical results for two eigenvalue problems with ‘clamp ’ 
conditions: (2.7), (2.1 1) and (2.7), (2.12). The first eigenvalue of the second problem is 
plotted in figure 6. In contrast with figure 4, at a critical length L,  = L,, the imaginary 
part of the first eigenvalue A, > 0, i.e. stability loss is accompanied by onset of self- 
sustained oscillations (folding) as observed experimentally. The same conclusion 
applied for problem (2.7), (2.1 1). Therefore, the ‘clamp ’ boundary condition in (2.11) 
and (2.12) yields folding at the point of stability loss. The folding frequency w = hi 
corresponding to the critical (buckling) height is shown in figure 7. The buckling height 
under the ‘clamp’ conditions (2.1 1) and (2.12) is plotted in figure 8. 

20-2 
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FIGURE 8. Buckling height: Curve (i) corresponds to (2.7), (2.11), (ii) to (2.7), (2.12). 

The results presented in figures 6-8 support the conclusions drawn in 52 that the 
'clamp' condition at z = 1 is the most appropriate one from the physical point of view. 

Let us now consider the reasons for the existence of a critical distance L,, between 
the nozzle exit and the plate, below which the jet or thread is stable. In accordance with 
(2 .2~-e)  and (2.4), the balance of the following force moments corresponds to motion 
of a liquid in a jet: 

(4.1 a-c) 

All relationships here are written in dimensional form for small bending 
perturbations; M ,  is the bending moment due to longitudinal compression; M ,  and M ,  
are the moments of the viscous stresses due to motion of a liquid particle along a 
curved trajectory and to curvature change with time. As the distance between the 
nozzle exit and the plate decreases, the moment hi2 increases sharply, since its 
magnitude is determined by the leading derivative ak/az = a3 H p z 3 .  Consequently, for 
sufficiently small distances L, M I  cannot overcome M ,  and the flow is stable. M ,  begins 
to dominate only for L > L,. 

5. Inclusion of gravity and surface tension 
In vertical jets and threads, the effect of gravity and surface tension has to be taken 

into account, both in an unperturbed solution and in a linear stability problem. In the 
case considered here using Entov & Yarin's (1984~) equations of thin jet dynamics (see 
also (2.1)) we obtain instead of ( 2 . 2 k e )  the following system: 

1 aF 
- - + A g  = 0, + k I g =  0, (5.1a-c) 
P az 
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where ( 5 . 2 ~ )  

and g is gravity acceleration, y is surface tension. Note that Entov & Yarin (1984~) 
used the notation 01 for surface tension. 

Equation ( 2 . 2 ~ )  remains valid alongside (5.1) and (5.2) without any change. 
Linearizing the problem thus obtained, and bearing in mind (2.3), we find the 

following equation for the eigenfunction f corresponding to the displacement amplitude 
H =Az)exp(At): 

U0 ao2 d2 a0/dz2 } cf 
a0 2daod2f dz dz' 3 [L2, + ( d ~ ~ / d z ) ~ ] ;  [LZ, + ( d ~ ~ / d z ) ~ ] t  dz2 + 

with the non-dimensional parameters 
G = pg~;/6,uw:, S = yL2/,uw:a; (5.44 b) 

representing the ratios of the gravity and surface forces to their viscous counterparts. 
With G = 6 = 0 and ao = E-'I2, (5.3) reduces to (2.7). 

At the nozzle exit the boundary conditions of the absence of jet displacement, 
smooth junction of the jet axis with the nozzle, and zero angular velocity of the liquid 
cross-section are posed. At the other end of the jet it is assumed that the jet axis is 
'clamped' at the wall. Thus, (5.3) is solved under boundary conditions (2.12), which 
seem the most realistic as follows from the discussion in $2. 

To solve the above eigenvalue problem, a solution for a steady-state jet radius ao(z) 
is needed. With the longitudinal force taken as F = 3,uA aw/az + yna, which simplifies 
(5.2a), the continuity and longitudinal momentum equations ( 2 . 2 ~ )  and (5.1 a)) 
reduce to 

(5.5u, b) 1 duo 
6L, dz 

= P2uo4 +-6-~", pz = L2, G ,  

As an unperturbed jet approaches the plate surface normally, the velocity wo tends 
to zero because of the impermeability of the wall, and the jet radius tends to infinity. 
Thus, the boundary conditions to be applied for (5 .5)  are as follows: 

z = o :  uO= 1; z =  1: uo=oo. (5.6a, b) 
Analyzing the data of Cruickshank & Munson (1981) and Cruickshank (1988) we 

observe that in their experiments the ratio S/6L, is much smaller (or significantly 
smaller) than p2 (the estimates are given below in $7). Under such conditions numerical 
calculations show that the solution of ( 5 . 9 ,  (5.6) is all but insensitive to the last term 
in ( 5 . 5 ~ )  with the surface tension parameter 6. Therefore, it is justified to take 6 = 0 and 
obtain, instead of (5.3, the following equation which has an analytical solution: 
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The solution of (5.7), (5.6) was obtained by Cruickshank & Munson (1982) and 
reads 

sinh(DP) 
0 < p < 1 ao(z) = 

sinh [DP( 1 - z)] ' 

(5.9) 
1 

1 -z ao(z) = -, /3 = 1, 

/!3> 1. sin (Dl P) 
sin [D, /3( 1 - z)] ' ao(z) = (5.10) 

In (5.8) D is a positive solution of the equation 
D = sinh(D@), (5.11) 

whereas in (5.10) D,  is a solution of 
D,  = sin (DIP) ,  (5.12) 

where D, belongs to the interval (O,n/P). 
If /3 < in the jet is in compression from the very beginning and daO/dz > 0. In this 

case the effect of liquid deceleration by the plate and emerging compressive viscous 
force is stronger than the effect of gravity acceleration. In a sense the dependence ao(z) 
for /3 < in is qualitatively similar to that of the model problem considered in $2, (2.6). 

If /3 > in the jet is in tension from the nozzle exit up to some cross-section 
(dao/dz < 0) (gravity acceleration dominates) but the last portion of the jet near the 
plate is in compression and daO/dz > 0 (the viscous compressive force dominates). This 
case is completely distinct from the model problem of $2. 

The behaviour of liquid jet in microgravity under the action of viscous forces and 
surface tension might be studied by using the solution of ( 5 3 ,  (5.6) with p = 0. This 
solution reads 

(5.13) 

a0(z) = l / ( l - ~ ) ,  6/6L, = 1. (5.14a, b) 

P 
ao(z) = 

(6/6L*) W P  P(1- 41  - 11 
for 6/6L, not unity, and 

In (5.13) for 0 < S/6L, < 1 P is a positive solution of the equation 

~ = l n (  6/6L, + '), 
6/6L* 

(5.15) 

whereas for 6/6L, > 1 P is a solution of (5.15) belonging to the interval (- S/6L,, 0). 
According to (5.1 3)-(5.15) the longitudinal force F divided by 6pnai w:/L equals 

- P: the case S/6L, > 1 when P c 0 relates to a tensile force F > 0, and S/6L, < 1 to 
a compressive force, F < 0. Hence, the solution (5.13)-(5.15) is expected to be unstable 
only for 6/6L, < 1 when it is qualitatively similar to the solution of the model problem 
of $2. 

6. Numerical method of solution 
Using the substitutions 

y ,  = (1 -Z),-l@(yz) (k = 0,L 2,3,4), y = cYo,Y1,Y2,Y3,Y4) (6.1) 
the problem (5.3), (2.12) is transformed into an eigenvalue problem for a system of 
first-order linear differential equations 

(1-Z)Z Y(z )+A(z ;h )  Y(z) = 0, ZE[O, 11, (6.2) 
Yr;fY=O, z = o ;  YJfY=O, z = 1 ,  (6.3a, b) 
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where A(z;  A)  is a 5 x 5 matrix of continuous components about z E [0,1] and depending 
on A ;  YY;S and": are scalar matrices of order 5 x 3 and 5 x 2, respectively (YT denoting 
the transpose of Y). 

The problem (6.2), (6.3) is a singular eigenvalue problem (the singularity being due 
to ao(z)+ co as z +  1). To solve it, we use the method proposed by Abramov (1961). 
Let Y(z;A) be an arbitrary solution of the system (6.2) satisfying the boundary 
condition at z = 1. Then, as has been proved by Abramov (1961), the solution Y(z; A) 
of the initial value problem 

Y-(BT-Y(YTY)-l'€'TBT)Y = 0, B = A(l -z)-~, ZE[O,  11, (6 .4~ ,  b) 

Y=Yy, ,  z = l  (6.5) 
satisfies Y(z; A) Y(z;  A) = 0 for any Z E  [0,1], (6.6) 
i.e. the boundary conditions at z = 1 can be shifted to any z E [0,1]. 

obtained in the form 
Hence, integrating (6.4), (6.5) up to z = 0, the required eigenvalue relation is 

where Y1,JA) denotes the solution of (6.4), (6.5) at z = 0. 
Using the bi-directional strategy, i.e. integrating (6.4) from both sides of the interval 

up to a prescribed interior point, the characteristic equation (6.7) may be obtained at 
any interior point z* in (0,l). 

The proposed method is stable and YYT = const. along the integration path. First 
it has been applied for solving (2.7), (2.9)-(2.12) using the substitutions y ,  = W ) ( z )  
instead of (6.1). 

To integrate (6.4), (6.5) numerically, the initial conditions (6.5) are shifted from the 
singular point at z, = I - e  (e being small). In these circumstances, an additional 
computation procedure is needed to guarantee accuracy of the results. The basic 
procedure is to iterate h until the solution A, of the characteristic equation (6.7) is 
obtained with the prescribed accuracy. The same procedure has to be repeated after z, 
steps toward unity, with a view to convergence of the successive approximations A,. 
When convergence is established with the prescribed accuracy, the last computed A, is 
taken as an eigenvalue of the original problem (5.3), (2.12), with ao(z) from (5.8)-(5.12) 
or (5.13)-(5.15). 

The successive approximations obtained as the right-hand end of the integration 
interval [0, ZJ approaches the singular point z = 1 are referred to as e-eigenvalues. In 
practice, the choice of z, is limited from above by a value less than 1 .O, dictated by the 
computer resources. Numerical experiments on a PC IBM AT/386 computer show 
that in order to guarantee an accuracy of lop4 in a single-precision arithmetic, the 
integration interval cannot extend beyond 0.999. 

7. Results, comparison with experiment and discussion 
In figure 9 the e-eigenvalues are plotted in the complex A-plane. A rectangle in the 

A-plane, bounded by -0.5 < Re{A} < 0.5 and 3.0 < Im{A} < 4.5 was searched for 
eigenvalues with parameters L,  = 13.8, G = 0.01 and 6 = 0, as z, tends to unity. All 
eigenvalues found within this rectangle are plotted in figure 9(a). As z, approaches 
unity, at values 0.986, 0.992 and 0.998 respectively, new eigenvalues appear; all e- 
eigenvalues cluster along the imaginary axis in the left-hand half-plane. The spectrum 
of the original singular problem (5.3), (2.12) seems to lie along the imaginary axis or 
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Re (At) 
FIGURE 9. All eigenvalues lying within the interval -0.5 < Re{h} < 0.5 and 3.0 < Im{h} < 4.5 at 
G = 0.01 and S = 0. (a) Rearrangement of e-eigenvalues as z, approaches unity. L,  = 13.80: 0, 
z, = 0.986; 0,  z, = 0.992; 0,  z, = 0.998. (b) Grouping of e-eigenvalues with increasing plate-nozzle 
exit distance L,: 0,  ., 0,  L, = 13.80; 0 ,  L, = 13.90; 0,  L,  = 13.92; 0, L, = 14.2. Curves: (i) 
z, = 0.998; (ii) ze = 0.995; (iii) ze = 0.992. 

along a line parallel and close to it in the left-hand half-plane. Hence Re {A,) < 0 and 
no instability is observed at the chosen flow parameters L,, G and 6. The structure of 
the e-eigenvalue spectrum shows that it is quite probably that of the singular problem 
(5.3), (2.12) consisting only of a continuous pattern at small values of L,  where the flow 
is expected to be stable. An attempt to compute the spectrum at ze = 0.999 in the 
example of figure 9 (a) is problematic even in double-precision arithmetic. 

The grouping of the e-eigenvalue spectrum as function of L, is shown in figure 9 (b). 
As L,  increases, all eigenvalues except one lie in the left-hand complex half-plane. At 
the critical value L, = 13.936 an e-eigenvalue appears in the right-hand half-plane, 
where convergence of this e-eigenvalue series is clearly stated for z, above 0.992 
(compare curves (i) (ii) and (iii). Hence, when searching for the critical buckling height 
L*l, it is reasonable to set z, = 0.995 and accept the corresponding eeigenvalue with the 
greatest real part as the first eigenvalue of the original problem (5.3), (2.12). To obtain 
L,,, as function of the viscous, gravity and surface-tension forces, we keep track of the 
first eigenvalue approaching the critical value L,, from above. 

In figure 10 the real and imaginary parts of the first eigenvalue are plotted against 
L,. It is seen that, as the latter increases, the eigenvalue appears in the upper half-plane 
at L,  = 12.61 and L, = 13.936 (as in figure 9b) for G = 0.02 and G = 0.01 
respectively. These values of L,  correspond to the onset of buckling.? Thus, the 
buckling height L,  decreases as the ratio of gravity to viscous forces G increases, which 
is in agreement with Cruickshank & Munson’s (198 1) experimental data. 

In figure 1 1 the eigenfunctions corresponding to slightly supercritical viscous-gravity 
t The imaginary part of the 6rst eigenvalue h,+O at the onset of buckling. It obviously 

corresponds to the folding frequency w* (dimensional) at that point. 
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6 t 
+ L* 

FIGURE 10. Real and imaginary parts of the first eigenvalue of A in (5.3), (2.12). Solid curves represent 
A,, dashed ones A,. Curves (i) correspond to G = 0.01, (ii) to G = 0.02. For all curves S = 0. 
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FIGURE 11. Eigenfunctions for Viscous-graVity jets. Curves (i) correspond to G = 0.01, L, = 13.94, 
p = 1.394 ( A  = 0.0047+3.75i); curves (ii) correspond to G = 0.5, L, = 7.365, ,8 = 5.208 
( A  = 0.0099+ 19,67441). The solid curves show the real part of the eigenfunctions, and the dashed 
curves the imaginary part. The eigenfunctions are normalized by their maximum values. 

jets with 6 = 0 are plotted, curve (i) for p = 1.394 < in (the jet in compression), and 
curve (ii) for /3 = 5.208 > in (the jet in tension high up changed to compression near 
the plate). It is seen that the folding motion is displaced to the plate as /3 grows beyond 
p. 1 



610 B. Tchavdarov, A .  L. Yarin and S.  Radev 

0.1 1 10 100 
1 
0.01 

PQlpgd~ 

c 
1 1 

1 10 100 1000 

PQlPgd: 

FIGURE 12. Buckling height as a fimction of viscous, gravity and surface-tension forces. (a) Low 
surface tension and flow rate. Curve, theoretical predictions for S = 0; 0, Cruickshank & Munson’s 
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To compare the theoretical results with Cruickshank & Munson’s (1981) and 
Cruickshank’s (1988) experimental data, according to the Buckingham Pi theorem we 
need four independent non-dimensional groups, defined first in the above-mentioned 
papers: 17, = y/@gdi), l7, = ,uQ/@gd:), l7, = gG/v2, and 17, = L/d,, where the nozzle 
diameter do = 2u0, the volume flow rate Q = ixdi w:, and the kinematic viscosity 
v = p/p. (Note that in contrast to the present work, Cruickshank & Munson 1981 use 
the notation y for pg and CT for the surface tension y.) The parameters 27-n; may be 
obtained by grouping the standard Reynolds, Froude and Ohnesorge numbers. 

All the other non-dimensional groups used above may be expressed in terms of 
l7-113 : 

The non-dimensional critical buckling height and frequency of the emerging folding, 
Ll/do and ij = w, do/wi, measured in the experiments depend on the three non- 
dimensional groups L71-173. Note also that 

(7.2) 

which means that the folding frequency is may be calculated by using the imaginary 
part of the eigenvalue A. 

Figure 12 shows the theoretical and experimental results for buckling height L,/do. 
In figure 13 the results for the non-dimensional buckling (folding) frequency a are 
plotted. Agreement between theory and experiment is fairly good. 

For the data of figure 12(a) the values of the ratio 6/6L, belong approximately to 
the interval (0.151 x lo-’, 0.151), and the values of to the interval (0.328, 32.8); for 
figure 12(b): 0.422 x lo-’ 5 6/6L, 6 4.22, and 6.42 x 5 p” 5 64.2; for figure 
12(c): 1.237 x 5 6/6L, 5 1.237, and 8.39 x lo-, 5 p2 5 8.39; for the experimental 
data and curve (iv) of figure 12(d): 4.64 x loW3 5 S/6L, 5 4.64, and 

13.1 x lo-, 5 p2 5 13.1. 

For figures 12(u)-(c) p2 is undoubtedly much larger than 6/6L, which justifies 
the reduction of equation (5.5) to (5.7) when the surface tension effect on the 
unperturbed solution was neglected. Even in the worst case corresponding to 
r/pg& = 1.77 in figure 12(d), the values of are three times larger than the values of 
6/6L,. The rather good agreement of the theoretical results with the experimental data 
in the worst case of figure 12(4 apparently shows that even in this case the effect of 
surface tension on the unperturbed solution of (5.5) is comparatively small and might 
be discarded. 

Cruickshank (1988) proposed a semi-empirical model of highly viscous jet buckling 
(with gravity and surface tension neglected). Putting his adjustable parameter k equal 
to unity he obtained the critical buckling height LJd0 = 7.6634. This value is in fairly 
good agreement with the experimental and theoretical data of figures 12(b), 12(c). 

(1981) experimental data for ylpgd; = 1.15 x Cruickshank‘s (1988) experimental data: 0,  
gdi/v2 = 2.85 x lo-*; ., gd:/v2 = 2.57 x (b) Higher surface tension: 
ylpgd; = 0.23. Curve, theoretical results; 0, Cruickshank’s (1988) experimental data. (c) Still higher 
surface tension: y/pgdt = 0.59. Curve, theoretical result; 0, Cruickshank’s (1988) experimental data. 
(d) Effect of surface tension on buckling height. Theoretical results: curve (i) ylpgd; = 0.23 or less, 
(ii) 0.59, (iii) 1, (iv) 1.77. 0, Cruickshank & Munson’s (1981) experimental data for ylpgd; = 1.77. 

A, gd:/v2 = 3.33 x 
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FIGURE 13. Frequency of oscillations at onset of buckling (folding). Curves: theoretical results. (a) 
Low surface tension and flow rate. Calculations with y = 0. Cruickshank & Munson's (1981) 
experimental data: 0 for ylpgd; = 6.33 x 
andgdi/v2 = 8.48 x andgd:/v2 = 0.66).  (b) Higher surface tension: 
y/pgd; = 0.59. Cruickshank & Munson's (1981) experimental data: ., gdi/v2 = 2.5 x 

and gdi/v2 = 7.59 x A, for ylpgd; = 2.54 x 
0, for ylpgd; = 1.43 x 

A, g q V 2  = 8.45 x 10-5. 

However, it fails on being compared with the data of figures 12(a) and 12(4 (curve 
iv and the corresponding experimental data). The present theory agrees fairly well with 
the experimental data in figure 12(u-4. 

Consider now the theoretical results on the behaviour of liquid jets in microgravity 
when G = 0 and p = 0. The critical buckling height is plotted in figure 14 as function 
of parameter 7 = y/6pwz: 

(7.3 a-c) 

It is seen in figure 14 that as surface tension grows the critical height first decreases 
and then begins to increase. When y/6puwi increases beyond 0.022, according to figure 
14 S/6L, tends to unity and the critical height rapidly grows as expected (e.g. for 
7 = 0.031, S/6L, = 0.86). 
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FIGURE 14. Buckling height in microgravity as function of surface-tension force. 

The growth of the critical height as 7 tends to zero looks paradoxical since in this 
case 6/6L, also tends to zero and the compressive force grows (e.g. for 6/6L, = 0.99, 
0.5, 0.1 and 0.01 the non-dimensional compressive force - P equals -0.04, - 1.24, 
- 3.6, and - 6.46, respectively). 

However, considering the balance of the following force moments corresponding to 
the motion of a liquid in a jet in this case: 

a3H M3 = -3pP- 
azzat 

(7.4a) 

(7.4b) 

(7.4 c)  

we find that as ‘ y + O  the resistive moments M ,  and M3 increase faster (due to rapid 
thickening of the jet) than the bending moment due to longitudinal compression M I .  
This effect dominates when 7 is smaller than 0.022, and, as a result, the critical height 
increases as 7 decreases. 

In contrast to this, in the region beyond 7 M 0.022 as ‘y decreases, the moment M I  
increases faster than M ,  and M3 and the critical height decreases. 

Note here that the steady-state model solution (2.6) possesses similar features when 
its stability is studied under the ‘clamp’ conditions (2.11) or (2.12) resulting in the 
emergence of the minimum in the dependence of the critical buckling height on 1/E. 
This is seen in figure 8, where the critical height as well as compressive force increase 
as 1/E increases beyond its value corresponding to the minima of L*l. 

It is emphasized that in contrast with figure 14 (when 7 < 0.022) the results plotted 
in figure 12(4 show the growth of the critical height as surface tension increases. This 
means that in the viscous-gravity jets of figure 12 (d) an increase in surface tension with 
fixed non-zero gravity affects, in the main, the moment M I  which decreases with the 
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compressive force, whereas the critical height increases (for ,uQ/pgdi = 2-3 in figure 
12(d): 0.01 5 $7 5 0.116). 

8. Conclusion 
The results obtained confirmed the hypothesis of G. I. Taylor (1969a, b) that 

buckling is due to the presence of longitudinal compression of the jet or thread and in 
this sense is a hydrodynamic analogue of Eulerian instability in thin elastic rods. 
Within the framework of the quasi-one-dimensional approach, the onset of buckling 
as well as the folding frequency have been quantitatively predicted. 

The analysis of the present work is only a linear stability theory. Therefore, to 
investigate in the framework of the quasi-one-dimensional approach the interesting 
nonlinear behaviour found in the experiments (a regular oscillation with a reproducible 
amplitude and the next folding/coiling bifurcation), one needs to solve the nonlinear 
equations (2.1), which is worthy of future study. 

B. T. and S. R. were partially supported by Bulgarian National Foundation’s for 
Scientific Research grants No. MM5 and MM-34/91. A.L.Y. is a recipient of 
Guastalla Fellowship established by Fondation Rashi, Planning and Grants 
Committee of the Council of Higher Education, the Israel Academy of Sciences and 
Humanities. The work of A. L.Y. was also supported in part, by the V.P.R. Fund. The 
authors would like to thank Dr Katalin Balla, Computer and Automation Institute of 
Hungarian Academy of Sciences, for helpful discussions on the numerical method. 

REFERENCES 
ABRAMOV, A. A. 1961 On the transfer of the boundary conditions for systems of ODES. 

BEJAN, A. 1987 Buckling flows: a new frontier in fluid mechanics. Ann. Rev. Numer. Fluid Mech. 

BIRKHOFF, G. & ZARANTONELLO, E. H. 1957 Jets, Wakes and Cavities. Academic. 
BOGY, D. B. 1979 Drop formation in a circular liquid jet. Ann. Rw. Fluid Mech. 11, 207. 
CRIJICKSHANK, J. 0. 1988 Low-Reynolds number instabilities in stagnating jet flows. J.  Fluid Mech. 

193, 1 1 1 .  
CRUICKSHANK, J. 0. & MUNSON, B. R. 1981 Viscous fluid buckling of plane and axisymmetric jets. 

J. Fluid Mech. 113, 221. 
CRUICKSHANK, J. 0. & MUNSON, B. R. 1982 The viscous-gravity jet in stagnation flow. Trans. 

ASME I: J.  Fluids Engng 104, 360. 
DEBYE, P. & DAEN, J. 1959 Stability considerations on nonviscous jets exhibiting surface or body 

tension. Phys. Fluids 2 ,  416. 
ENTOV, V. M. & YARIN, A. L. 1984a The dynamics of thin liquid jets in air. J.  FZuid Mech. 140,91. 
ENTOV, V. M. & YARIN, A. L. 19846 Dynamics of free liquid jets and films of viscous and 

GUREVICH, M. I. 1965 Theory of Jets of Ideal Fluids. Academic. 
JENKINS, D. R. & BARTON, N. G. 1988 Computation of the free-surface shape of an inviscid jet 

KING, A. C. 1990 A note on the impact of a jet on a porous wall. ZMA J. Appl. Maths. 45, 139. 
MATOVICH, M. A. & PEARSON, J. R. A. 1969 Spinning a molten threadline. Steady-state isothermal 

RAYLEIGH, LORD 1879 On the capillary phenomena of jets. Proc. R. Soc. Lond. A 29, 71. 
TAYLOR, G. I. 1969a Instability of  jets, threads and sheets of viscous fluid. Proc. 12th Zntl Congr. 

J.  Comput. Maths Math. Phys. 1 ,  542 (in Russian). 

Heat Transfer 1 ,  262. 

rheologically complex liquids. Adv. Mech. VINITI, Fluid Mech. 18, 112 (in Russian). 

incident on a porous wall. IMA J. Appl. Maths 41, 193. 

viscous flows. Ind. Engng Chem. Fundam. 8, 522. 

Appl. Mech., Stanford, 1968, p. 382. 



Buckling of thin liquid jets 615 

TAYLOR, G. I. 1969 b Electrically driven jets. Proc. R.  SOC. Lond. A 313, 453. 
VASSALLO, P. & ASHGRIZ, N. 1991 Satellite formation and merging in liquid jet breakup. Proc. R. 

WEBER, C. 1931 Zum Zerfall eines Fluessigkeitsstrahles. Z .  Angew. Math. Mech. 11, 136. 
SOC. Lond. A 433, 269. 




